eliminate matrix interferences, the analysis is fairly rapid and reliable, at least 4-5 times more rapid than the accepted atomic absorption method of the AOAC (1973).

- LITERATURE CITED
- Amos, M. D., Amer. Lab., 4(8), 57 (1972).
- Analytical Methods Committee, Analyst (London) 79, 397 (1954). Associated Press release, The Cincinnati Enquirer (Sept 18,
- 1973)
- Association of Official Analytical Chemists, J. Ass. Offic. Anal. Chem. 56, 481 (1973)

- Chem. 36, 481 (1973).
 Brodie, K. G., Matousek, J. P., Anal. Chem. 43, 1557 (1971).
 Christian, G. D., Anal. Chem. 41, 24A (1969).
 Consumer Reports, 601 (Oct, 1973).
 Donega, H. M. Burgess, T. E., Anal. Chem. 42, 1521 (1970).
 Fiorino, J. A., Moffitt, R. A., Woodson, A. L., Gajan, R. J., Huskey, G. E., Scholz, R. G., J. Ass. Offic. Anal. Chem. 56, 1246 (1973). 1246 (1973)
- Gajan, R. J., Larry, D., J. Ass. Offic. Anal. Chem. 55, 727 (1972).
 Hoover, W. L., Melton, J. R., Howard, P. A., J. Ass. Offic. Anal. Chem. 54, 860 (1971).
 Hwang, J. Y., Mokeler, C. J., Ullucci, P. A., Anal. Chem. 44, 2018 (1972).
- Hwang, J. Y., Ullucci, P. A., Smith, S. B., Jr., Malenfant, A. L., Anal. Chem. 43, 1319 (1971).

- Kurz, D., Roach, J., Eyring, E. J., Anal. Biochem. 53, 586 (1973).
 Manning, D. C., Amer. Lab., 5(8), 37 (1973).
 Matousek, J. P., Amer. Lab., 3(6), 45 (1971).
 Matousek, J. P., Stevens, B. J., Clin. Chem. 17, 363 (1971).
 Murne, R. K. Holland, D. C. Lass, Chin. Anal. Chem. 54, 28

- Munns, R. K., Holland, D. C., J. Ass. Offic. Anal. Chem. 54, 202 (1971).
- Shea, K. P., Environment 15, 6 (March, 1973).
 Slavin, W., "Atomic Absorption Spectroscopy," Interscience, New York, N. Y., 1968, p 118.
 Takeuchi, T., Yanagisawa, M., Suzuki, M., Talanta 19, 465 (1979).
- (1972). Taphorn, J. E., III, Department of Chemistry, University of Cin-
- cinnati, 1973, private communication. United Press International release, The Cincinnati Enquirer
- (Sept 19, 1973). Yanagisawa, M., Takeuchi, T., Suzuki, M., Anal. Chim. Acta 64,
- 381 (1973). Youden, W. J., "Statistical Methods for Chemists," Wiley, New York, N. Y., 1955, pp 43-45.

Received for review October 31, 1973. Accepted May 22, 1974. The authors gratefully acknowledge the National Science Foundation who supported this study in the form of a research grant (GP36478).

Volatile Constituents of Pressure Cooked Pork Liver

Cynthia J. Mussinan* and John P. Walradt

The volatile constituents of pressure cooked pork liver were isolated by simultaneous steam distillation and continuous solvent extraction. Analysis by gas chromatography and coupled gc-mass

spectrometry led to the identification of 179 compounds. The mass spectral identifications were confirmed by matching retention indices. Pyrazines were the largest group of compounds found.

As a food, liver is an important source of protein, fat, and vitamins, particularly vitamins A, D, E, and vitamin B complex. A search of the literature, however, has revealed that no previous work has been reported on the volatile constituents of cooked liver. Pork liver was chosen for this study because its odor is typical of liver, and it is considerably stronger than calf or beef liver.

EXPERIMENTAL SECTION

Locally procured pork liver (42.5 lb) was sliced into small pieces and passed through a Fitz Mill Model D Comminuter (knives forward, no screen). The sliced liver was transferred to a 20-gal, steam jacketed, doubly stirred, stainless steel, pressure reaction vessel (Groen Div., Dover Corporation, Elk Grove, Ill.) and then slurried with 27 l. of distilled water. The vessel was sealed, heated to 325°F, and held at this temperature for 15 min. The maximum head pressure attained was 98 psi. At the end of the cooking period the vessel was cooled by passing water through the jacket, and the contents, which had a typical cooked liver aroma, were filtered through cheese cloth and a wire basket funnel into 5-gal polyethylene containers and stored at -20° until used.

The filtrate was atmospherically steam distilled, and the distillate continously extracted with distilled diethyl ether in a scaled-up (22 l.) model of William's apparatus (Williams, 1969). The distillation-extraction was carried out over a 48-hr period for each of the two batches.

The extracts were combined, dried over anhydrous sodium sulfate, and initially concentrated to about 80 ml by careful distillation in a 1-l. Kuderna-Danish concentrator (Kontes Glass Co., Vineland, N. J.) equipped with a 508 mm \times 25.4 mm i.d. reflux column packed with 6 mm \times 6 mm Raschig rings. The extract was further concentrated to about 15 ml in a 100-ml round-bottomed flask with a 35 mm \times 10 mm o.d. test tube sealed to the bottom and equipped with a 300 mm × 13 mm i.d. Vigreux reflux column. The open container was then allowed to stand at room temperature until the sample had concentrated to a final volume of about 10 ml. The concentrated extract possessed a typical cooked liver aroma.

The concentrate was analyzed on a Hitachi Model RMU-6E mass spectrometer coupled with a Hewlett-Packard Model 5750 gas chromatograph using a Watson-Biemann helium separator (Watson and Biemann, 1965). The chromatographic columns used were 1000 ft \times 0.03 in. i.d. stainless steel open tubular columns coated with SF-96 and Carbowax 20M. Further analysis was preceded by area trapping in Varian 1-ml collection bottles cooled with Dry Ice-isopropyl alcohol. The instrument used was a Varian Series 712 preparative gas chromatograph with a flame ionization detector employing a 12 ft × 3/8 in. stainless steel column packed with 20% SE-52 on 45-60 mesh acid-washed, DMCS-treated Chromosorb W. The oven temperature was programmed from 80 to 225° at 4°/min after a 5-min post-injection hold. The injector and detector temperatures were 230° and the helium flow rate was approximately 300 ml/min. Six traps were collected at arbitrary intervals and analyzed in the gc-mass spectrometry system. Traps 1-4 were analyzed on 1000 ft \times 0.03 in. stainless steel open tubular SF-96 and Carbowax 20M columns. Trap 5 was analyzed on a 500 ft \times 0.03 in. stainless steel open tubular SF-96 column and an 8 ft \times $^{1\!\!/}_{\!\!/8}$ in. stainless steel column packed with 10% Carbowax 20M on 80-100 mesh acid-washed, DMCS-treated Chromosorb W,

International Flavors and Fragrances, Inc., Union Beach, New Jersey 07735.

Table I. Compounds Identified from Cooked Pork Liver

	${f Retention\ index}^{lpha}$				
	CBW		SF-96		
Compound	Known	Unknown	Known	Unknown	Mass spectral data ^{b}
page		Hydrocar	bons		
2-Pentene		<1.00			55, 70, 42, 41, 39, 29
Heptane			3.05	3.05	43, 41, 29, 27, 57, 100
Pentadecene				10.77	41, 55, 57, 69, 83, 56210
Pentadecane		9.10			$57, 71, 43, 41, 85, 55 \dots 212$
Hexadecene		10.43			$41, 43, 55, 57, 83, 69 \dots 224$
Hentadecane				19 99	57, 43, 71, 41, 29, 85,, 226
Renzene	9.99	2 80		12.00	78 51 52 50 77
Ethylbenzene	2.02	2.00	4 74	4 76	91, 106, 51, 39, 65, 27
Hexylbenzene				1	43, 77, 91, 162, 27, 29
Toluene			3.75	3.62	91, <i>92</i> , 39, 65, 61
<i>m</i> -Xylene	5.17	5.17			91, 106, 105, 39, 51, 77
Limonene			6.49	6.33	68, 93, 39, 67, 41, 27 <i>136</i>
Mothemal		Alcoho		<1.00	21 20 00 00 10
Fthanol			<1.00	< 1.00	31, 32, 29, 20, 18 31, 45, 90, 97, 46
2-Propanol	2 30	2 26	<1.00	<1.00	45 43 27 29 41 60
1-Butanol	5 00	5 00			56 31 41 43 27 42 74
2-Methyl-1-propanol	4.37	4.38			43, 31, 41, 42, 27, 33,, 74
2-Butanol	3.55	3.66			45, 27, 59, 31, 29, 4374
3-Methyl-1-butanol	5.55	5.50			41, 29, 55, 31, 57
2-Methyl-2-butanol	3.45	3,40			59, 73, 43, 55, 3188
2-Methyl-3-buten-2-ol	3.82	3.85			$71, 43, 59, 41, 39 \dots 86$
1-Octen-3-ol	7.97	8.00	,		$57, 43, 41, 72, 55, 27 \dots 128$
Acotoldobydo		Aldehy	1es	<1.00	90 44 49 96 49 97
Propagal	<1.00	<1.00	<1.00	<1.00	29, 44, 43, 20, 42, 27
Butanal	<1,00	<1.00	1 79	1 76	<i>44 43 72 41 27 29</i>
Pentanal			2.79	2.81	44, 29, 27, 41, 58, 28,
Hexanal			4.00	4.00	41, 29, 43, 27, 56, 57, 100
Heptanal			5.11	5.00	29, 27, 41, 44, 43 <i>114</i>
Octanal	6.59	6.67			43, 29, 41, 44, 57, 55128
Nonanal			7.20	7.17	41, 43, 57, 56, 44, 29142
Dodecanal		11 50	10.14	10.26	43, 41, 57, 82, 29, 68184
Tridecanal Tetra decement	11.78	11.70	10.00	10 10	57, 43, 41, 82, 55 198
Pentadecanal			12.20	12,13	$43, 41, 57, 55, 29, 82 \dots 212$
Heredecanal					$43, 41, 57, 55, 25, 82 \dots 220$
Heptadecanal					43, 41, 57, 55, 29, 82, 254
Octadecanal					43, 41, 57, 55, 82, 29268
Isobutyraldehyde			1.28	1.31	43, 41, <i>72</i> , 27, 29
Isovaleraldehyde			2.37	2.35	44, 41, 43, 46, 58, 29 86
2-Methylbutanal			2.49	2.44	29, 41, 27, 57, 58, 3986
2-Butenal	4.05	4.00			41, 70, 39, 69, 29, 44
2-Metnyl-2-butenal	4.67	4.58	F 69	= =0	55, 29, 84, 27, 39
2-Detenal	8.00	7 95	0.03	0.02	$41, 83, 55, 57, 56, 59 \dots 112$ $41, 29, 27, 55, 39, 70, 126$
2-Octenal 2-Phenyl-2-butenal	0,00	1.50	8.94	9 10	<i>146</i> , 117, 115, 91, 116, 39
5-Methyl-2-phenyl-2-hexenal			11.02	11,12	188, 91, 117, 115, 43, 39
Benzaldehyde			5.79	5.80	77, 105, 106, 51, 50
Phenylacetaldehyde			6.65	6.81	91, 92, 39, 65, <i>120</i>
		Keton	es		
Acetone	1.00	1.00	1 = 1	1 05	43, 58, 27, 26, 42, 29
2-Butanone			1.74	1.65	43, 29, 27, 72, 26, 57
2-Fentanone 2 Hontonono			2.60	2.70	42, 27, 00, 41, 39, 30
2-Detanone	6 56	6 61	4.05	4.05	43, 58, 21, 71, 23, 41
2-Octanone 2-Decanone	0.00	0.01	8 00	8 00	58, 43, 59, 71, 41, 156
2-Tridecanone	11.70	11.58	0.00	0.00	58, 43, 59, 71, 41, 57198
2-Heptadecanone					58, 43, 71, 85, 69, 83254
3-Pentanone			2.75	2.81	57, 29, 27, 86, 26, 42
3-Octanone	6.24	6.26	_		43, 57, 29, 71, 72, 99128
4-Methyl-2-pentanone	2.04	0.00	3.47	3.28	43, 58, 57, 41, 29, 85100
3-Buten-2-one	2.94	2.80	0 55	0 50	55, 43, 27, 70, 26, 42
o-methyl-o-buten-2-one 3-Penten-2-one	4 00	1 05	2.55	2.50	40,41,04,09,09,42 69 11 81 12 29 10
2.3-Butanedione	4,90	4.00	1 69	1 89	43 86, 42, 29 41
2.3-Pentanedione			2.84	2.90	43, 29, 57, 27, 15, 100
Cyclopentanone	5.55	5.42	2.01	2.00	55, 28, 41, 84, 42, 56
2-Cyclopenten-1-one	7.30	7.11			39, 82, 27, 54, 53, 26
1-Phenyl-2-propanone			7.49	7.58	43, 91, 92, 134, 65, 39
1-Hydroxy-2-propanone				3.37	43, 31, 74, 29, 42, 45

	Retention index ^a					
	CBW		SF	-96		
Compound	Known	Unknown	Known	Unknown	Mass spectral data [*]	
2 Hudrowy 2 hutenone			3 08	3 50	45 43 97 99 18 98 88	
3-Hydroxy-2-pentanone			4.25	4.38	59. 31. 43. 45. 41. 58102	
2-Hydroxy-3-pentanone			4.27	4.45	45, 59, 31, 43, 29, 57102	
	Esters					
Methyl formate	1 00	1 00	<1.00	< 1.00	31, 29, 32, 60, 15	
Ethyl formate	1.00	1.00	2 00	2 00	31, 29, 27, 40, 74 43 99 97 98 45 88	
Pentyl acetate	5.40	5.35	2,00	2.00	43, 70, 55, 15, 41, 27,130	
Acetol acetate			4.89	5.10	43, 29, 42, 116, 86, 27	
Ethyl propionate			3.00	3.00	29, 57, 27, 28, 26, 45 102	
Ethyl isovalerate	4.28	4.30			29, 57, 27, 88, 41, 85130	
Ethyl dodecanoate	12.00	12.00	14 00	14 00	$88, 29, 101, 41, 43, 27 \dots 228$	
Methyl hexadecanoate			14.00	14.00	74 87 75 69 143 83 270	
Methyl nexadecanoate		Acid	S		1, 01, 10, 00, 110, 001270	
Acetic acid					43, 45, 60, 28, 15, 42	
Octadecanoic acid					43, 57, 41, 55, 71, 73284	
		Lactor	nes			
δ-Nonalactone	15 99		10.32		$99, 42, 27, 41, 29, 71 \dots 156$	
o-Decalactone	10.20	Fura	ns		<i>99, 21, 42, 41, 11, 43110</i>	
2-Methylfuran	2.00	1.95			82, 53, 81, 39, 27, 29	
2-Ethylfuran			3.00	3.00	81, 39, <i>96</i> , 41, 51, 65	
2-Butylfuran			5.02	5.16	81, 82, <i>124</i> , 53, 39, 41	
2-Pentylfuran			6.00	5.85	81, 82, 138, 53, 41, 39	
2-Furaldenyde 5 Methyl 2 fyraldenyde			4.62	4.91	39, 96, 95, 29, 38	
Furfuryl alcohol			5 33	5.90	$39 \ 98 \ 41 \ 29 \ 81 \ 53$	
2-Acetylfuran			5.20	5,53	95, 110, 43, 39, 96, 68	
Propionylfuran			6.39	6.40	95, 124, 39, 96, 67, 55	
Furfuryl methyl ketone			5.67	5.80	43, 81, 53, 82, 124	
2-Methyltetrahydrofuran-3-one			$\frac{4.32}{5.32}$	4.18	43, 72, 100, 29, 45, 27	
Furfuryl formate			5.32	5.46	81, 53, 126, 52, 80, 2 7	
Furfuryl acetate			5.00 7.06	7.03	81, 43, 98, 52, 53, 140 81, 27, 29, 52, 53, 98, 154	
Furfuryl butyrate	10.18	9.81	1.00	1.00	81. 27, 98, 43, 53, 52,	
Furfuryl pentanoate			8.85	8.26	81, 27, 29, 98, 53, 41182	
Furfuryl hexanoate	12.00	12.02			81, 27, 98, 53, 43, 29196	
Ethyl furoate	9.79	9,81	F 00	5 00	95, 29, 39, 112 <i>140</i>	
Ethyl furfuryl ether			5.09	5.08 9.49	81, 82, 53, 27, 29 126 81, 82, 53, 97, 97, 90, 178	
2 2'-Methylenedifuran			6.87	5.42 7.16	<i>148</i> 91 120 147 39 65	
5-Methyl-2,2'-methylenedifuran			7.84	7.95	162, 91, 43, 147, 161, 119	
2(or 3)-Phenylfuran			8.40°	8.64	144, 115, 145, 63, 116, 89	
	0.40	Thiaz	oles			
Thiazole	6.18	6.25			58, 85, 57, 45, 26, 32	
$2-\Delta cetulthiazole$	0.50		6 30	6 62	<i>99, 11, 12,</i> 40, 39, 69 <i>43, 197,</i> 99, 58, 57, 119	
2-Acetyninazore		Thioph	enes	0.02	40, 127, 00, 00, 01, 112	
2-Methylthiophene	4.62	4,58			97, 98, 45, 39, 99, 27	
2-Thiophenecarboxaldehyde			6.19	6.54	111, 112, 39, 29, 45, 83	
3-Thiophenecarboxaldehyde			6.27	6.62	111, 112, 39, 45, 83, 57	
3-Methyl-2-thiophene-			7.48	7.21	125, 126, 97, 45, 53, 127	
carboxaldenyde 5-Mothyl 2 thiophono			781	7 75	195 196 53 97 45 197	
carboxaldebyde			1.01	1.10	120, 120, 00, 01, 40, 121	
2,5-Dimethyl-3-thiophene-			8.23	8.27	140, 139, 111, 59, 29, 45	
carboxaldehyde						
2-Acetylthiophene			6.90	7.44	111, 126, 39, 43, 45, 83	
3-Acetylthiophene			0.00	0.40	111, 43, 126, 39	
5-Methyl-2-acetylthiophene	14 02	15 59	8.36	8.48	125, 140, 53, 45, 43, 97	
rmopheneacroiem	14.92	10.04 Sulfur Cor	npounds		100, 40, 110, 20, 100, 00	
Methanethiol		Quirur Con	<1.00	<1.00	47, 48, 45, 46, 15, 44	
Methyl sulfide	$<\!\!1.00$	<1.00			62, 47, 45, 46, 61	
Methyl disulfide			3.30	3.47	94, 45, 79, 46, 47, 43	
Methyl sulfone	12.12	12.10			79, <i>94</i> , 45, 29, 48, 63	
Methyl thioacetate	9,29	9.41	3 00	3 00	00, 78, 40, 29, 40, 61 43 90 45 47 48 49	
Methyl thiopropionate	4.93	4.92	5.00	0.00	29, 57, 104, 27, 45, 47	
Ethyl thiopropionate	5,31	5.30			57, 29, 118, 27, 61, 58	
Benzyl methyl sulfide	10.29	10.26			91, 138, 45, 65, 39, 92	
Furfuryl methyl sulfide	8.58	8.38	0.00	0.40	81, 128, 53, 27, 45, 51	
r urturyi methyl disulfide			8.39	8.46	81, 53, 27, 45, 51, 160	

Table I (continued)

	Retention index ^a				
	CBW		SF	-96	
Compound	Known	Unknown	Known	Unknown	Mass spectral data ^b
		Pyrroles	3		
Pyrrole-2-carboxaldehyde		-	8.44	8.27	95, 94, 39, 66, 38, 28
5-Methylpyrrole-2-carboxaldehyde			8.32	8.53	109, 108, 80, 53, 27, 29
1-Acetylpyrrole	9,06	8.95			67, <i>109</i> , 39, 43, 41, 40
2-Acetylpyrrole		10 50	8.39	8.18	94, 109, 39, 66, 38, 43
2-Propionylpyrrole	13.56	13.70 Pvrazine	es		94, 123, 66, 39, 95, 28
Pyrazine		- ,	3.30	3.50	26, 80, 53, 28, 52, 51
Methylpyrazine			4.38	4.38	94, 67, 26, 39, 40, 55
Ethylpyrazine			5.21	5.30	107, 108, 26, 27, 39, 79
2,3-Dimethylpyrazine			5.45	5.30	67, 108, 42, 41, 39, 52
2,5-Diethylpyrazine			5.17	5.21	42, 108, 39, 38, 27, 81
2,6-Dimethylpyrazine			5.12	5.28	108, 42, 39, 38, 67, 41
2-Ethyl-5-methylpyrazine			5.96	6.00	121, <i>122</i> , 39, 27, 56
2-Ethyl-6-methylpyrazine			5.91	5.95	121, <i>122</i> , 39, 42, 40, 27
2,5-Diethylpyrazine			6.93	7.00	136, 121, 135, 39, 27
Trimethylpyrazine			6.16	6.09	42, 122, 39, 27, 81, 54
2-Ethyl-3,5-dimethyl-			6.83	6.93	135, 136, 39, 42, 56, 54
2-Ethyl-3,6-dimethyl-			6.90	6.81	135, 136, 42, 56, 39, 108
5-Ethyl-2,3-dimethyl-					135, 136, 42, 39, 56, 108
2,3-Diethyl-5-methyl-			7.63	7.59	150, 135, 56, 39, 149, 41
2,5-Diethyl-3-methyl-	8.70	8.52			149, <i>150</i> , 39, 135
yyrazine 3,5-Diethyl-2-methyl-	8.60	8.47			149, 150, 39, 122, 53, 135
pyrazine Triethylpyrazine	9.06	9.08			<i>164</i> , 149, 163, 39, 56, 136
Tetramethylpyrazine 2-Methyl-3-vinyl-	8.41	$\frac{8.30}{6.42}$			54, <i>136</i> , 42, 27, 52, 39 119, <i>120</i> , 67, 26, 39, 52
pyrazine 2 Mathyl 5 vinyl			6 26	6 40	190 59 54 39 51 97
pyrazine			0.20	0.40	120, 02, 04, 00, 01, 27
Acetylpyrazine 2-Methyl-5(or 6)-acetyl-			$\frac{6.30}{7.27^{d}}$	6.66 7.50	43, 122, 80, 79, 52, 53 136, 43, 94, 93, 39, 67
pyrazine			7 01	7 09	49 107 150 59 97 70
2-Ethyl-3-acetylpyrazine 2-Ethyl-5(or 6)-acetyl-			7.81 7.70 ^e	7.93 7.90	<i>43</i> , 107, 150, 52, 27, 79 <i>150</i> , 43, 107, 108, 53, 27
pyrazine 6.7-Dibydro-5 <i>H</i> -cyclopenta-			7 18	7 43	120, 119, 39, 65, 52, 27
pyrazine	10 50	10.00			
2-Methyl-6,7-dihydro-5 <i>H</i> - cyclopentapyrazine	10.73	10.60			134, 133, 39, 66, 40, 107
5-Methyl-6,7-dihydro-5 <i>H</i> -			7.47	7.56	119, <i>134</i> , 133, 39, 27, 52
2(or 3)5-Dimethyl-6,7-dihydro-	10.26	10.26			148, 66, 147, 39, 27, 107
Quinovalina	12 71	12 55			130 76 103 50 75 51
2-Methylouinovaline	12,71	12.00	9 24	9.39	<i>144</i> 117 76 50 77
6-Methylquinoxaline		13.08	0,21	0.00	144, 90, 89, 117, 143, 145
5.6.7.8-Tetrahydroquinoxaline		10,000	8.05	8.22	134, 133, 52, 106, 39, 27
2-Methyl-5,6,7,8-tetrahydro-			9.00	9.05	148, 147, 39, 52, 120, 79
(2-Furyl)pyrazine	12.80	13.35			146, 93, 63, 64, 92, 39
2-(2-Furyl)-5(or 6)-methyl- pyrazine			9.87	9.64	160, 92, 63, 39, 93, 64
PJ IGEINC		Miscellane	eous		
Ethyl vinyl ether			<1.00	<1.00	44, 43, 72, 29, 27
Diethyl ether			1.10	0.97	31, 59, 29, 45, 27, 74
Acetaldehyde, diethyl acetal			3.20	3.18	45, 73, 29, 27, 43118
Phenol	13.46	13.40			94, 39, 66, 65, 40
Trimethyloxazole Vanillonitrile	5.50	5.68			43, 42, <i>111</i> , 55, 68, 27 134, <i>149</i> , 106, 29, 51, 78

^a Compounds with an I_E value lower than that of ethyl formate (1.00) are given as <1.00. ^b These data were taken from the mass spectra of known compounds. However, in every case the data for the unknown compound matched that for the known. The mass spectrometer used had a source temperature of 150°, an ionizing voltage of 70 eV, and an ionizing current of approximately 3.5 A. Numbers in italics are the molecular weights of the compounds. ^c The 2 and 3 isomers have very similar retention indices and mass spectra. The authentic compounds were synthesized by E. Klaiber and A. O. Pittet of IFF. ^d I_E for 2-methyl-5-acetylpyrazine. ^e I_E for 2-ethyl-5-acetylpyrazine.

and trap 6 was analyzed on a 3 ft \times $\frac{1}{8}$ in. stainless steel column packed with 2% OV-17 on 80-100 mesh acidwashed, DMCS-treated Chromosorb W. All capillary analyses were carried out at a helium flow rate of 10 ml/ min. The oven temperature was programmed from 70 to 190° at 1°/min for the total extract and trap 1, and at 2° / min for traps 2-5.

Identifications were based on the comparison of known and unknown mass spectra and confirmed wherever possible by determining the retention indices, or $I_{\rm E}$ values, relative to a series of ethyl esters of normal alkanoic acids (van den Dool and Kratz, 1963). Additional confirmation for certain compounds was provided by the gc analysis of the total extract and each trap for the presence of sulfur and/or nitrogen containing compounds. The instrument used was a Tracor MT 220 gas chromatograph modified in our laboratory as described by Walradt (1973).

For identification purposes, some compounds for which mass spectral data were not available were synthesized: furfuryl methyl ketone (Hass et al., 1950); ethyl furfuryl ether (Kirner, 1928); propionylfuran (Heid and Levine, 1948); furfuryl methyl disulfide (Milligan and Swan, 1963); 2-thiophene acrolein (Hori, 1958); 2,4,5-trimethyloxazole (Reppe and Magin, 1963); ethyl thiopropionate, by a modification of the procedure of McFadden et al. (1965); and furfuryl propionate, by a modification of a method described by Blatt (1941). The bicyclic pyrazines were synthesized by Pittet et al. (1974).

RESULTS AND DISCUSSION

Table I lists the compounds that were identified. In some cases, the small amount of sample available precluded the determination of $I_{\rm E}$ values. In other cases the "known" compound was not readily available. In the case of some very polar compounds, for example furfuryl alcohol, the known and unknown $I_{\rm E}$ values may differ considerably due to the fact that the $I_{\rm E}$ value of the unknown is determined on a complex mixture "spiked" with ethyl esters where its retention time may be affected by the other components. The $I_{\rm E}$ value for the known compounds, however, is determined on a mixture of the pure compound with a series of ethyl esters. This effect is particularly evident with free acids. Where there is a discrepancy in the $I_{\rm E}$ value, the compound was only reported if its mass spectral fragmentation pattern was very characteristic. In those cases where the position of the double bond was not specified, this information could not be unambiguously determined from the data.

Table II shows some quantitative data for the major classes of compounds found in cooked pork liver. The figures were determined by computer area normalization and incorporate data for both the positively identified comTable II. Relative Per Cent of Major Classes of **Compounds in Volatiles from Cooked Pork Liver**

Class	Quantity, %
Ketones	0.53
Esters	0.56
Hydrocarbons	1.33
Miscellaneous	1.38
Sulfur compounds	2.16
Alcohols	4.21
Aldehydes	14.07
Furans	28.80
Pyrazines	40.96
	Total 94.00

pounds reported in this paper as well as some tentatively identified compounds. It should be pointed out that pyrazines were by far the largest class of compounds found, accounting for almost 41% of the isolated components amenable to gc analysis.

SUMMARY

Pork liver, cooked superatmospherically at 325°F, was analyzed by gc and coupled gc-mass spectrometry. A total of 179 components have been identified. Although none of these chemicals can be considered to have a typical liver character, many of them are believed to contribute to the overall flavor quality.

ACKNOWLEDGMENT

The authors thank Anne Sanderson for assistance in obtaining and interpreting mass spectra.

LITERATURE CITED

- Blatt, A. H., Ed., "Organic Syntheses," Collect. Vol. I, 2nd ed, Wiley, New York, N. Y., 1941, p 285. Hass, H. B., Susie, A. G., Heider, R. L., J. Org. Chem. 15, 8 (1950).
- Heid, J. V., Levine, R., J. Org. Chem. 13, 409 (1948).

- Hori, J., V., Leville, R., S. Org, Chem. 13, 403 (1948). Hori, I., J. Sci. Res. Inst. Tokyo 52 (1479), 78 (1958). Kirner, W. R., J. Amer. Chem. Soc. 50, 1955 (1928). McFadden, W. H., Seiffert, R. M., Wasserman, J., Anal. Chem. 37, 560 (1965).
- Milligan, B., Swan, J. M., J. Chem. Soc. A, 6008 (1963). Pittet, A. O., Muralidhara, R., Walradt, J. P., Kinlin, T. E., J. Agr. Food Chem., 22, 273 (1974).

- Agr. Food Chem., 22, 273 (1974).
 Reppe, W., Magin, A., French Patent 1,340,996 (Sept 16, 1963).
 van den Dool, H., Kratz, P. D., J. Chromatogr. 11, 463 (1963).
 Walradt, J. P., in "Techniques of Combined Gas Chromatography/Mass Spectrometry: Applications in Organic Analysis," McFadden, W. H., Ed., Wiley. New York, N. Y., 1973.
 Watson, J. T., Biemann, K., Anal. Chem. 37, 844 (1965).
 Williams, A. A., Chem. Ind. (London), 1510 (1969).

Received for review February 13, 1974. Accepted May 6, 1974. Presented at the 166th National Meeting of the American Chemi-cal Society, Chicago. Ill., Aug 26–31, 1973.